福利姬视频在线看-福利姬图库入口-福利姬网站入口-福利姬网站在线观看-福利姬网址-福利姬下载-福利姬液液酱喷水-福利姬一区二区

最近搜索:細(xì)胞培養(yǎng) 微生物學(xué) 分子生物 生物化學(xué)
首頁(yè)>>免疫學(xué)>>一抗>>磷酸化RNA聚合酶II CTD抗體
磷酸化RNA聚合酶II CTD抗體
  • 產(chǎn)品貨號(hào):
    BN41220R
  • 中文名稱:
    磷酸化RNA聚合酶II CTD抗體
  • 英文名稱:
    Rabbit anti-RNA polymerase II CTD repeat YSPTSPS (phospho S2) Polyclonal antibody
  • 品牌:
    Biorigin
  • 貨號(hào)

    產(chǎn)品規(guī)格

    售價(jià)

    備注

  • BN41220R-100ul

    100ul

    ¥2470.00

    交叉反應(yīng):Human,Rat(predicted:Mouse,Dog,Cow) 推薦應(yīng)用:WB,IHC-P,IHC-F,IF,Flow-Cyt,ELISA

產(chǎn)品描述

英文名稱RNA polymerase II CTD repeat YSPTSPS (phospho S2)
中文名稱磷酸化RNA聚合酶II CTD抗體
別    名Rpb1 CTD; RNA polymerase II; RNAPII; POLR2A; POLR2; DNA directed RNA polymerase II A; DNA-directed RNA polymerase II largest subunit; DNA-directed RNA polymerase II subunit A; DNA-directed RNA polymerase II subunit RPB1; DNA-directed RNA polymerase III largest subunit; Polr2a; RNA pol II CTD; RNA polymerase II subunit B1; RNA-directed RNA polymerase II subunit RPB1; RPB1; RPB1_HUMAN.  
產(chǎn)品類型磷酸化抗體 
研究領(lǐng)域細(xì)胞生物  免疫學(xué)  信號(hào)轉(zhuǎn)導(dǎo)  轉(zhuǎn)錄調(diào)節(jié)因子  表觀遺傳學(xué)  
抗體來(lái)源Rabbit
克隆類型Polyclonal
交叉反應(yīng)Human, Rat,  (predicted: Mouse, Dog, Cow, )
產(chǎn)品應(yīng)用WB=1:500-2000 ELISA=1:5000-10000 IHC-P=1:100-500 IHC-F=1:100-500 Flow-Cyt=1ug/Test IF=1:100-500 (石蠟切片需做抗原修復(fù))
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量217kDa
細(xì)胞定位細(xì)胞核 
性    狀Liquid
濃    度1mg/ml
免 疫 原KLH conjugated Synthesised phosphopeptide derived from human RNA polymerase II CTD around the phosphorylation site of Ser2:Y(p-S)PT 
亞    型IgG
純化方法affinity purified by Protein A
儲(chǔ) 存 液0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
保存條件Shipped at 4℃. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles.
PubMedPubMed
產(chǎn)品介紹DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cleft, the clamp element that moves to open and close the cleft and the jaws that are thought to grab the incoming DNA template. At the start of transcription, a single stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol II. A bridging helix emanates from RPB1 and crosses the cleft near the catalytic site and is thought to promote translocation of Pol II by acting as a ratchet that moves the RNA-DNA hybrid through the active site by switching from straight to bent conformations at each step of nucleotide addition. During transcription elongation, Pol II moves on the template as the transcript elongates. Elongation is influenced by the phosphorylation status of the C-terminal domain (CTD) of Pol II largest subunit (RPB1), which serves as a platform for assembly of factors that regulate transcription initiation, elongation, termination and mRNA processing. Acts as a RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicate and transcriptase for the viral RNA circular genome.

Function:
DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cleft, the clamp element that moves to open and close the cleft and the jaws that are thought to grab the incoming DNA template. At the start of transcription, a single stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol II. A bridging helix emanates from RPB1 and crosses the cleft near the catalytic site and is thought to promote translocation of Pol II by acting as a ratchet that moves the RNA-DNA hybrid through the active site by switching from straight to bent conformations at each step of nucleotide addition. During transcription elongation, Pol II moves on the template as the transcript elongates. Elongation is influenced by the phosphorylation status of the C-terminal domain (CTD) of Pol II largest subunit (RPB1), which serves as a platform for assembly of factors that regulate transcription initiation, elongation, termination and mRNA processing. Acts as a RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicate and transcriptase for the viral RNA circular genome.

Subunit:
Component of the RNA polymerase II (Pol II) complex consisting of 12 subunits. The phosphorylated C-terminal domain interacts with FNBP3 and SYNCRIP. Interacts with SAFB/SAFB1. Interacts with CCNL1 and MYO1C (By similarity). Interacts with CCNL2 and SFRS19. Component of a complex which is at least composed of HTATSF1/Tat-SF1, the P-TEFb complex components CDK9 and CCNT1, RNA polymerase II, SUPT5H, and NCL/nucleolin. Interacts with PAF1. Interacts (via C-terminus) with FTSJD2, CTDSP1 and SCAF8. Interacts via the phosphorylated C-terminal domain with WDR82 and with SETD1A and SETD1B only in the presence of WDR82. Interacts with ATF7IP. When phosphorylated at 'Ser-5', interacts with MEN1; the unphosphorylated form, or phosphorylated at 'Ser-2' does not interact.

Subcellular Location:
Nucleus.

Post-translational modifications:
Dephosphorylated by the protein phosphatase CTDSP1.
Ubiquitinated by WWP2 leading to proteasomal degradation.
Methylated at Arg-1810 by CARM1. Methylation occurs only when the CTD is hypophosphorylated, and phosphorylation at Ser-1805 and Ser-1808 prevent methylation (in vitro). It is assumed that methylation occurs prior to phosphorylation and transcription initiation. CTD methylation may facilitate the expression of select RNAs.

Similarity:
Belongs to the RNA polymerase beta' chain family.

SWISS:
P24928

Gene ID:
5430

Database links:

Entrez Gene: 5430 Human

Entrez Gene: 20020 Mouse

Entrez Gene: 363633 Rat

Omim: 180660 Human

SwissProt: P24928 Human

SwissProt: P08775 Mouse

Unigene: 270017 Human

Unigene: 16533 Mouse



Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.


主站蜘蛛池模板: 亚洲男人的天堂精品一区二区 | 免费无遮挡无码永久在线观看视频 | 久久久久中文字幕 | 91探花在线观看 | 国产亚洲999精品AA片 | 91乱码人妻精品一区二区三 | 久久精品午夜一区二区福利 | 国产精品系列在线一区 | 国产成人亚洲精品无码 | 无码丰满少妇2在线观看 | 国产美女高潮流的白浆久久 | a一级毛片视频免费看 | 国产精品一区二区久久国产 | 国产成人精品久久亚洲高清 | 国产精品久久久久人妻无码网址 | 国产激情va在线影片播放 | 国产一区二区三区色噜噜图片 | 熟妇人妻一区二区三区四区 | 亚洲无码午夜 | 国产免费A无码视频 | 成人国内免费精品视频在线观看 | 纯肉腐文高H总受男男 | 国产毛片一区二区精品 | 99久久精品国产综合婷婷 | 国产成人免费av片在线观看婷婷 | 国产女王强制射精在线 | 欧美日韩欧美一区 | 无码人妻一区二区三区免费看 | 成人毛片在线视频 | 2025国产手机在线精品 | 国产一区视频在线 | 久久精品国产亚洲av麻豆蜜芽 | 久久棈精品久久久久久 | 亚洲丰满爆乳熟女在线观看 | 精品无码中文字幕网站 | 国产91精品在线观看导航 | 99久久综合狠狠综合久久浪潮 | 极品私人尤物在线精品首页 | 撸撸在线影院 | 日本人妻中文字幕乱码系 | 亚洲成aⅴ人片在线观 |